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An index for quantifying deviations from normal gait
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Abstract

A method is derived to calculate the amount by which a subject’s gait deviates from an average normal profile, and to represent
this deviation as a single number. The method uses principal component analysis to derive a set of 16 independent variables from
16 selected gait variables. The sum of the square of these 16 independent variables is interpreted as the deviation of the subject’s
gait from normal. Statistical tests of the method’s validity and an initial demonstration of its clinical utility are included. It is
found that using this index, increasing clinical involvement corresponds to increasing index score. © 2000 Published by Elsevier
Science B.V. All rights reserved.

Keywords: Gait analysis; Multivariate analysis; Cerebral palsy; Human locomotion

www.elsevier.com/locate/gaitpost

1. Introduction

Gait analysis provides an effective tool for evaluating
and quantifying the effects of a surgical intervention or
other treatment on a patient’s gait [1]. An experienced
clinician can make a subjective evaluation as to whether
a patient’s gait has become more normal following
intervention and, with the gait analysis data, quantify
the specific features of the gait that have changed.
However, even with the assistance of gait analysis,
objectively quantifying the degree to which a patient’s
gait has improved following an intervention remains
difficult.

Most research studies using gait analysis have relied
on comparisons of a limited number of specific gait
characteristics to evaluate the effects of surgical proce-
dures [2–6]. Such studies ignore the high degree of
correlation that exists between various aspects of an
individual’s gait. Peak knee flexion during gait, for
example, has been previously shown to be highly de-
pendent on walking speed [7]. Similarly, hip flexion
depends on the position of the pelvis, knee flexion and
ankle dorsiflexion both depend on the orientation of

the shank, and hip rotation and foot progression angle
are highly coupled. In only a few cases have techniques,
based on multivariate statistics that attempt to account
for such correlation, been used to describe gait patterns.
For example, Mah et al. [8] apply principal component
analysis to time series functions of eight measured
kinematic variables in order to determine three time
series principle components describing over 90% of the
information in the gait data. In addition, Loslever et al.
[9–11] use a correspondence factor analysis method to
describe different walking patterns within a group of
normal subjects.

To accurately evaluate the extent of gait deviations
from normal gait, or to assess the changes in a gait
resulting from a specific treatment, it is important to
consider not only how each feature of the gait pattern
has changed but also how the relationship between the
features changed. To evaluate whether a specific gait
variable is normal, abnormal, or improved following
treatment, the natural correlation that exists between
gait variables must be determined. For this reason
multivariate statistical techniques are used to develop a
measure of how closely an individual gait pattern ap-
proaches normal. This ‘closeness’ is referred to as the
normalcy index.* Corresponding author.
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2. Methodology

In simplest terms, the normalcy index can be consid-
ered a measure of the distance between the set of
discrete variables describing a patient’s gait pattern and
the average of those variables in persons with no gait
abnormalities. Because the discrete gait variables are
correlated, a simple distance calculation between the
original discrete variables and the mean value that is
expected for a normal gait pattern would not be ex-
pected to accurately represent the degree of gait abnor-
mality (Fig. 1). However, using techniques from
multivariate statistics it is possible to uncorrelate the
discrete variables and calculate the distance in a new
uncorrelated coordinate system. The normalcy index is
the square of this uncorrelated distance. The procedure
used to calculate the index is outlined below and illus-
trated in Fig. 2.

2.1. To calculate the normalcy index

Choose N discrete gait variables. Let these variables
be represented by xj, j=1, N. The choice of variables is
inherently arbitrary. For this project a group of experi-
enced clinicians were polled to arrive at an appropriate
set of variables. Variables were selected that the clini-
cians felt correlated closely with particular gait prob-
lems. For example, clearance of the foot in swing is an

Fig. 2. A hypothetical two variable demonstration of the method used
to calculate the normalcy index. (A) Combinations of the two corre-
lated gait variables that are within two S.D.s of the mean normal
combination are contained within an ellipse situated at an angle with
respect the coordinate axes. A specific patient is represented by a
particular combination of these two variables. (B) The principal
components (eigenvectors) are coordinate axes aligned with the major
and minor axes of the two S.D. ellipse. The combination of principal
components (principal component scores) for the patient can be seen
in the rotated coordinate system. (C) The scaled uncorrelated vari-
ables y1 and y2 are shown. The ellipse, plotted in these uncorrelated
and scaled coordinates, becomes a circle. The distance from the
transformed point representing the specific patient to the origin
provides a meaningful measure of how far the patient’s combination
of standard normal gait variables is from the average combination of
these variables. The normalcy index is the square of this distance.

Fig. 1. Illustration of how correlation influences the interpretation of
normalcy for two correlated variables. The ellipse represents the area
within two S.D.s of the mean of two hypothetical normally dis-
tributed variables that have a strong correlation. All combinations of
variables within the ellipse are within two S.D.s of the mean combi-
nation M. Each of the points represented by A, B, C, and D is a pair
of data points within two S.D.s of the individual means of each of the
two variables. If each variable were considered individually all four
would be considered equally likely. However, A and D are outside of
the two S.D. region while B and C are within. That is, because of the
correlation between the two variables A and D represent a combina-
tion of the two variables that are less likely to occur than the
combinations represented by B and C.
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important pre-requisite of normal gait and is closely
correlated with the magnitude and timing of peak knee
flexion as well as the magnitude of dorsiflexion during
swing.

1. Let mj, sj be the mean and S.D. of xj measured on
M normal subjects.

2. Let zj be a set of standardized discrete gait vari-
ables (zero mean, unit S.D.) defined by,

zj = (xj−mj)/sj, j=1, N (1)

3. Note that this standardization is required so that
the different units of the discrete variables do not
skew the results. These variables are correlated
with one another (Fig. 2A).

4. Calculate the covariance matrix, Cij, for the N
standardized discrete variables. The covariance
matrix is an N×N matrix with the ij position
occupied by the correlation coefficient between the
ith and the jth variable.

5. Calculate the N eigenvalue–eigenvector pairs, li–
ei, of the covariance matrix. The eigenvectors can
be expressed as:

ei= %
N

j=1

a
j

ixj, (2)

where xj are the original gait variables and a j
i are

relative weights determined solely by the orthonor-
mality constraint. The eigenvectors form a set of N
independent/uncorrelated variables, called princi-
pal components, that are linear combinations of
the original N discrete variables [12]. The eigenvec-
tors may be thought of as orthogonal coordinate
axes spanning an N dimensional space such that

ei · ej=Í
Á

Ä
1 i= j
0 i" j

. (3)

It is worth noting that an infinite number of such
coordinate systems can be derived via a rotation of
the original coordinate system (Fig. 2B). This fact
imposes some logical imperatives on the distance
measure proposed for index (step 10). The average
normal subject lies at the origin of this space.

6. Define a new set of scaled independent/uncorre-
lated variables, yi, such that each yi has equal
variance over the population of M normal subjects
(Fig. 2C). This is accomplished through division by
the square root of the corresponding eigenvalues.

yi=
�1

li

� %
N

j=1

ajzj. (4)

By applying this scaling the magnitude of variation
inherent in certain variables is accounted for. In

other words, if one of the original N variables (or
some linear combination of the N variables) has a
large variation within the normal population, then
a large deviation from the average value of that
variable will not count excessively against the ‘nor-
malcy’ of a subject with some pathology. Argu-
ments against such a scaling are not without merit.
It could be argued, for example, that the eigenvec-
tors associated with small eigenvalues represent
variable combinations that may be small random
fluctuations and should not be magnified through
division by their eigenvalue.

7. Let a subject’s gait be represented by the same N
discrete variables x̃j, j=1, N.

8. Scale x̃j by the average normal gait variables as
follows:

z̃j = (x̃j−mj)/sj, j=1, N, (5)

where mj and sj are the mean and S.D. from the
normal population (step 2 above).

9. Apply the transformation of Eq. (4) to the pa-
tient’s gait variables:

ỹi=
�1

li

� %
N

j=1

a j
iz̃j, (6)

where again liand a j
i are derived from the normal

population (step 5 above).
10. Find the square of the Euclidean length of ỹi for a

given subject

d= %
N

i=1

ỹ i
2. (7)

This number, d, represents the square of the dis-
tance of an individual patient’s data from the
normal mean in the new uncorrelated coordinate
system. This number is referred to hereafter as the
‘normalcy index’.

The gait of 71 patients and 24 controls with no
known gait abnormalities seen in the Gillette Children’s
Motion Lab between 1993 and 1996 was measured. The
age range of the patients pre-operatively was 7 years 2
month to 19 years 10 months (average 10 years 4
months), while the normals ranged in age from 4 years
11 months to 17 years 7 months (average 10 years 6
months). The patients all had a diagnosis of cerebral
palsy although their level of involvement ranged from
mild hemiplegia to severe quadriplegia. The hemiplegic
patients were classified into Type I, Type II, Type III
and Type IV based on the classification scheme de-
scribed in Winters et al. [6].

Three-dimensional positions of 13 reflective markers
attached to the subjects were tracked using an optical
motion measurement system (VICON, Oxford Metrics,
Oxford, UK) as each subject walked at a self-selected
speed. The VICON Clinical Manager (VCM) software
was used to calculate three-dimensional joint angles
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from each subject’s measurements and these joint an-
gles were reported at intervals of 2% of the total gait
cycle. VCM calculates joint angles as ordered rotations
between anatomically aligned reference frames associ-
ated with adjacent body segments [1,13].

Several walking trials were collected for each subject.
From these, one representative gait cycle on the right
and one representative gait cycle on the left were se-
lected. Sixteen discrete variables were determined from
the kinematic measurements for each gait cycle. These
discrete variables are: time to foot off as a percent of
the total gait cycle time, walking speed normalized by
leg length, cadence, mean pelvic tilt, pelvic range of
motion in the sagittal plane, mean pelvic rotation,
minimum hip flexion, total range of hip flexion–exten-
sion, peak abduction in swing, mean hip rotation in
stance, knee flexion at initial contact, time to peak knee
flexion, total range of knee flexion–extension, peak
dorsiflexion in stance, peak dorsiflexion in swing and
mean foot progression angle in stance.

The normalcy index, based on these 16 discrete vari-
ables, was calculated for each gait cycle of both individ-
uals with cerebral palsy and the control subjects with
no gait abnormalities. Separate measures for the right
and left gait cycle for each subject were obtained.

3. Results

A number of analyses were conducted to gain confi-
dence in the index and establish its clinical utility. The
objective in selecting the 16 discrete variables used to
calculate the index was to have a finite set of variables
that well described an individual’s gait pattern. Vari-
ables generally considered to be clinically important

were chosen. Still the process of selecting the set of
variables to use was subjective. To evaluate the conse-
quences of the choices the index was recalculated leav-
ing out one variable each time. Using the measurements
from all 95 subjects (subjects with gait pathologies and
controls), the correlation between the original index
and indexes calculated with one variable omitted were
determined. The normalcy index appears to be rela-
tively insensitive to its exact composition. That is, none
of the 16 gait variables chosen for inclusion in the index
seem to dominate the final value (Table 1). In all cases
the correlation coefficient between the index calculated
with all 16 variables and the index calculated with 15 of
the 16 variables was found to be greater than 0.95. In
13 of the 16 cases the correlation coefficient calculated
was greater than 0.99. The lowest correlation (0.96) was
between the indexes calculated with and without the
time to peak knee flexion. This indicates that there may
be a smaller set of variables that could also adequately
describe the gait. For other analyses that are computa-
tionally intensive, such as forward dynamic simulations
or dynamic stability analyses, finding this minimal vari-
able set may be of great value. For the purposes of this
study it was deemed to be of less importance since the
computational burden of 16 variables was minimal.

Next, the distribution of the control subjects’ indexes
was compared to the x2 distribution (Fig. 3). The
distribution of a sum of squares of N normally dis-
tributed quantities is represented by a x2 distribution
with N−1 degrees of freedom [14,15]. The control
subjects’ normalcy indexes were thus expected to follow
a x2 distribution of 15 degrees of freedom. Such a x2

distribution has a maximum peak at 13 and 99.5% of
the values are below 33. The control subjects’ indexes
all were found to be between 5 and 30 with the greatest
number (16) between 10 and 15. The distribution of the
control subjects’ indexes was also seen to be skewed
slightly towards the right (i.e. the distribution to the
right of the peak is more spread out than to the left)
similar to the x2 distribution.

It is desirable that the index be able to distinguish
between patients with different severity of gait abnor-
mality. To test this, the average and range of index
values were determined for each of the diagnosis
groups: controls, type I hemiplegia, type II hemiplegia,
type III hemiplegia, type IV hemiplegia, diplegia and
quadriplegia. The average and ranges for the hemiple-
gia patients were calculated with the affected and unaf-
fected side considered separately and averaged. It is
expected that, on average, the more severe diagnoses
would correspond to more gait abnormalities and thus
result in higher normalcy indexes. That is the index
values, on average, should be higher for patients with a
diagnosis of type II hemiplegia than for patients with a
diagnosis of type I hemiplegia; higher for patients with
Type III hemiplegia than for patients with Type II

Table 1

CorrelationaExcluded parameter

Time of toe off 0.991
Walking speed 0.998
Cadence 0.999

0.996Mean pelvic tilt
Range of pelvic tilt 0.987

0.995Mean pelvic rotation
0.997Minimum hip flexion

Range of hip flexion 0.998
Peak abduction in swing 0.998

0.996Mean hip rotation in stance
Knee flexion at initial contact 0.986
Time of peak knee flexion 0.960
Range of knee flexion 0.998

0.997Peak dorsiflexion in stance
Peak dorsiflexion in swing 0.994

0.998Mean foot progression angle

a Correlation between index calculated with all 16 parameters and
index calculated with one excluded parameter.
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Fig. 3. Actual and expected distributions of normalcy index values for subjects without identified gait abnormalities. The distribution of the
indexes calculated individually for the right and left side of the 24 control subjects is represented as a histogram. The expected distribution, a x2

distribution with 15 degrees of freedom (solid line), is shown for comparison. The actual and expected distributions compare favorably.

Table 2

Subjects Mean normalcy index (range)aN Mean unaffected side only (range) Mean affected side only (range)

Normal 24 15.7 (8.2–26.9)

Hemiplegics
74.9 (36.5–187.6)Type I 51.0 (28.3–91.14)8 98.8 (28.5–311.6)

133.32 (32.1–357.0) 103.37 (26.0–276.9)8 163.3 (38.2–437.1)Type II
172.4 (55.3–362.0) 70.4 (32.1–94.2)Type III 274.5 (60.70–638.9)10

639.3 (212.2–1066.5) 378.7 (140.2–617.3)4 900.0 (284.3–1515.7)Type IV
30All 166.7 (32.1–1066.5) 95.4 (26.0–617.3) 236.0 (28.5–1515.7)

23Diplegic 279.4 (28.46–1322.3)

491.0 (121.5–1195.0)Quadriplegic 11

a Right and left side indices averaged to obtain single index for each subject.

hemiplegia; higher for Type IV than Type III; higher
for diplegic patients than hemiplegic patients; higher for
quadriplegic patients than for diplegic patients; and
higher on the affected side of the hemiplegic patients
than on the unaffected side. Table 2 indicates that this
is, in fact, the case.

The range of values for each diagnosis category was
found to be large (Table 2). This is consistent with the
wide range of patient characteristics and the impreci-

sion of the diagnosis categories. However, the mean
index values were found to increase with the level of
involvement. The mean index for the control subjects
was the lowest. The mean index for quadriplegic pa-
tients the highest. No overlap was found between index
values for the control subjects and the individuals with
gait abnormalities. Within the hemiplegic patients the
index was seen to increase with type. Type I hemi-
plegics on average having a lower index than the type II



L.M. Schutte et al. / Gait and Posture 11 (2000) 25–3130

hemiplegics, type II having a lower index than type III,
and type III lower than type IV. The indexes calculated
for the affected side for the hemiplegic patients were
also seen on average to be larger than the index for the
unaffected side. In addition, the range of index values
for the affected side was seen to be greater than the
range for the unaffected side. Because of the wide range
of index values in each of the diagnosis categories,
however, no statistical conclusions about the relation-
ship between diagnosis and index values could be made.

4. Discussion

The purpose of the normalcy index is to find a single
number that reflects the amount by which a subject’s
gait deviates from an average normal gait. By default,
the notion of normal is subjective. The method pro-
posed, however, is general in nature and allows for
subject group or task specific choices of the defining
variables. For this study, 16 kinematic parameters were
selected. The selection was driven largely by clinical
input, but partly by convenience. The 16 variables
presented are the ‘best effort’ of the authors. One
should not conclude, however, that other ‘better’ sets of
variables could not be found. The list presented here
included only kinematic variables. The inclusion of
kinetic variables, while useful in planning intervention,
would have excluded non-independent ambulators from
the analysis. This study focuses on the task of level
ground walking. If the activity of interest were stair
climbing, rising from a chair or jumping a completely
different set of variables would likely be warranted.

The normalcy index shows potential as a useful tool
to objectively quantify overall changes in gait. The
index accounts for the correlation between many inter-
related gait variables and provides a single number that
indicates how closely a given gait pattern approaches
normal. As such this index may prove to be useful for
outcomes studies in which a means of accurately quan-
tifying gait changes is needed, and for other studies in
which there is a need to account for the relationship
between correlated gait variables.

The relationship seen between the expected and ac-
tual distribution among the subjects with no gait abnor-
malities and the trends seen between the severity of the
diagnosis and the normalcy index gives added confi-
dence that this is a useful measure. While these findings
should not be construed as proof of the validity of the
measure, in both cases the results compared favorably
with expectations. These findings lend support to the
notion that the index provides useful information about
the nature of the subject’s gait.

The value chosen to reflect normalcy (d) is only one
of a variety of possible measures that could be applied
to a selected set of gait variables. The Euclidean length

based measure has the advantage of being symmetric,
invariant under a rotation of the coordinate axes, obey-
ing the triangle inequality and being familiar to most
readers [12]. However, it is important to stress that
there is no de facto reason to select this distance
measure over other possibilities. If, for example, the
largest eigenvalue of the covariance matrix dominates
the subsequent eigenvalues, it’s value alone could be
interpreted as suitably summarizing the variation inher-
ent in all of the variables. Furthermore, if large devia-
tions from normal are to be severely penalized powers
\2 could be used in Eq. (7). These points highlight the
fact that the normalcy index contains inherent subjec-
tivity and must be applied in conjunction with appro-
priate clinical interpretation and evaluation.

It is worth noting that several other multivariate
statistical methods such as factor analysis, cluster anal-
ysis, linear and non-linear discrimination analysis and
regression analysis are related to the procedure de-
scribed here. Factor analysis attempts to enumerate a
minimal set of underlying factors that influence the
observed variables. Cluster analysis is useful for finding
similarities and differences in measured variables for
subjects drawn from a discrete number of homogeneous
groups (such as hemiplegia types). Discrimination anal-
ysis is complementary to cluster analysis and is useful
for categorizing subjects into one of several known
groups using combinations of measured variables. Re-
gression analysis looks for causal relationships whereby
dependent variables are determined by independent
variables. Principal component analysis, as used in this
study, is a method of transforming variables in order to
remove their interdependence. In this regard, principal
component analysis may be used as a pre-cursor to any
of the above mentioned multivariate techniques. For
example, a discriminating function may be constructed
for categorizing subjects based on their normalcy index
along with other variables.

The important clinical question following any treat-
ment protocol is ‘Has the patient improved?’ From the
patient’s point of view, the criteria for judging improve-
ment is typically whether his/her function has im-
proved. Is the individual able to do the things he/she
wants to do better than before the surgical procedure?
Even though the normalcy index presented here does
provide a way to quantify and evaluate changes in gait
patterns resulting from treatments, it does not necessar-
ily indicate whether there has been any improvement or
degradation of function. There is no established rela-
tionship between normalcy of gait pattern and function,
since abnormalities in gait pattern can actually repre-
sent very functional coping mechanisms [16]. However,
the reality is that clinical diagnosis is typically made by
comparing a patient’s measurements to normal data.

Clinical gait analysis laboratories are no exception,
commonly plotting a patient’s gait data on the same
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page with normal controls for comparison. The nor-
malcy index proposed here provides the same type of
comparison condensed to a single number. In order to
provide a more complete appraisal of a particular pa-
tient’s improvement the normalcy index will have to be
used in conjunction with other outcome measures such
as patient satisfaction and/or an evaluation tool for
assessing functional improvement. In addition, the par-
ticular variables chosen for this paper were based on
the empiric experience of the authors. Consequently, it
could certainly be argued that another set of variables
exists within the data that would more accurately reflect
the patient’s outcome, for example, a data set that
includes selected kinetic variables.

5. Conclusion

A new method has been described for measuring the
effects that specific treatments have on a patient’s gait.
Initial efforts to gain confidence in this measure indi-
cate that it has clinical relevance and is robust. The
method has potential as a tool for quantifying surgical
outcomes and addressing the question of whether, in
the presence of post-operative changes in ambulation,
an individual’s gait has actually improved. Opportuni-
ties for further research still remain. Among these are
optimization of the variable set, investigation of non-
Euclidean distance based measures, and the possible
relationships between the normalcy index and other
multivariate statistical methods.
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